

Adventium Enterprises

- Woman-Owned Small Business
 - 16 Scientists (8 PhD, 4 MS, 4 BS), 22
 Total
 - Cleared for classified work

Providing System-level Guarantees

- Map system/environment models into a mathematical model
- High-level properties (e.g., safety)
 mapped all the way to low-level
 components
- –Supports composition, abstraction, and embedding
- Patent pending

System-Level Trust Enabler (SLATE)

000 STATUS

Current technology provides component guarantees:

- Trusted components can fail badly
- The system must be trusted

PRIMARY INNOVATION:

Constraint-based reasoning addresses system-level trust issues of fixed and reconfigurable complex systems.

- SLATE composes and/or abstracts subsystem /component level behaviors into a system design model.
- Constraint model is built from that design specification to provide input for constraint-based reasoning.
- Identify whether or not system properties are met, what components are involved in each system-level property, and vice versa.

ASSUMPTIONS AND LIMITATIONS:

Dependent upon accurate models Component-level V&V is an input

- •Simplify system design, maintenance, and reconfiguration
- •Generate testing strategies to establish system properties.
- •Incorporate changes in a resource-efficient way

Verification and validation Test generation and analysis **Certification arguments** System design tradeoffs

Tradeoff analysis for system-level attributes of complex cyber-physical systems

SLATE Applied to META

- Given physical, system, component models, SLATE can determine "adaptability associated with a given system architecture [to] support tradeoffs between adaptability, complexity, performance, cost, schedule, risk and other system attributes." META Bullet 2
 - Scenario 1: Determine the impact of component failures/changes on systems-level guarantees.
 - Scenario 2: For a change in required systems-level properties, determine affected components (which ones will need to change).
 - Scenario 3: For a given system configuration, determine CONOPS that can be supported.
 - Scenario 4: For a given CONOPS, determine supporting system configurations.
- Straight-forward development needs for META
 - Interface SLATE with the models and design artifacts used in META
 - Reasoning framework already exists
 - Relate the constraint analysis results to a quantitative adaptability metric,
 - Explanatory drill down is already supported.
- Contact: Kyle Nelson (kyle<dot>nelson<at>adventiumenterprises<dot>com)